专利摘要:
本発明は、耐衝撃性改良ポリアミド組成物からなるエアバッグ容器に関し、ポリアミド組成物は、25cm3/10分より高い溶融体積流量を有する。ポリアミド組成物は、好ましくは、ベースポリアミドと、耐衝撃性改良剤と、強化化合物と、流動性向上剤とを含む。
公开号:JP2011506201A
申请号:JP2010538651
申请日:2008-12-16
公开日:2011-03-03
发明作者:ファン,;マルニクス ガープ,;ジェローン;ジュースト クリーブクール,;マルク;ルドルフ;ステファン ヘイスマン,
申请人:ディーエスエム アイピー アセッツ ビー.ブイ.;
IPC主号:B60R21-00
专利说明:

[0001] 本発明は、耐衝撃性改良ポリアミド組成物からなるエアバッグ容器に関する。]
[0002] エアバッグキャニスタとも称されるエアバッグ容器は、自動車の安全エアバッグ用のハウジングである。エアバッグは、主要な乗員安全機構である。エアバッグは、必要が生じたときに完全に機能しなくてはならず、そのための機会は一回限りである。エアバッグシステムは、車両への設置前に各々が正常に機能するかどうかを個別に検査して判断することはできないため、破壊検査を受ける。製造者は、自らの構築したエアバッグが意図したとおりに機能することを確認しなければならない。そのため、製造者は、性能要件を超える既知の安全マージンを備えたシステムを設計及び構築する必要がある。エアバッグ安全装置は複雑なシステムであり、あらゆる構成要素が確実な展開に寄与する。構成要素をより正確に作製して公差を小さくするほど、性能はより保証される。エアバッグ容器又はエアバッグハウジングは、ガス発生器、エアバッグ及びカバーといった、より周知されている主要な構成要素と同じように不可欠な役割を果たす受動的な構成要素である。ハウジングが受動的であるというのは、展開するまではそのままの状態を保たなければならないためである。ハウジングが装薬の力を受けて予期せぬ変形を被ったり、亀裂が入って割れ始めたりすれば、エアバッグは設計どおりには展開せず、任意の車両乗員にとって破滅的な結果となる可能性がある。さらに悪いことに、ハウジングが激しい脆性の破損を被った場合には、ハウジングの破片によって、そのシステムが保護しようと意図する運転者又は乗員に重大な危害がもたらされ得る。こうしたことを考慮すれば、エアバッグ容器は展開時に急激で強烈な内圧を受けることから、エアバッグ容器は、高い動的破裂圧力抵抗を有しなければならない。]
[0003] 現在エアバッグ容器に用いられている材料は主に金属であるが、プラスチック製のエアバッグ容器もまた、重量の低減を考慮して多く用いられるようになっている。エアバッグ容器は極限条件下で機能しなければならず、これは、エアバッグ容器があらゆる条件下で、すなわち、最低−35℃に至るまでの超低温、及び最高85℃に至るまでの高温において性能を果たし得ることを示す。低温でのリスクは、プラスチック製のハウジングに亀裂が入り、それが脆性破断により破損することであり、これはエアバッグの不十分な展開又は展開の失敗、及び砕片の発生につながる。高温では、プラスチック材料は十分な強度を保たなければならず、さもなければ破断が起こり、同様の結果か、又はさらに悪い結果となり得る。こうした極限条件を耐え抜くのは、専用に開発された材料のみである。耐衝撃性改良強化ポリアミド6組成物が、現在、高い動的破裂圧力を要件とするエアバッグ容器に用いられている。こうした組成物は、低温では極めて高い衝撃性能を有し、ひいては脆性破損が回避される一方、高温では、性能を果たすには十分過ぎるほどの強度を保つように配合することができる。耐衝撃性改良強化ポリアミド6組成物は、かかる組成物からなるエアバッグ容器が1.6MPaより高い動的破裂圧力(−35℃での計測時)を有するように配合することができる。しかしながら、別の要件として、かかる成形部品の対費用効果の高い生産工程、とりわけ短いサイクル時間がある。かかる耐衝撃性改良ポリアミド組成物は、有利には、特に低温時の高い動的破裂圧力と、特に高温時の高い強度とを要件とするエアバッグ容器の成形に用いることができるが、その欠点は、かかる組成物のメルトフローが比較的低いことであり、結果として成形工程のサイクル時間が長くなり、ひいては成形工程に時間及びコストがさらにかかることとなる。成形工程のサイクル時間は、通常、金型の型閉時から始まり、金型の型開及び部品の取出時に終わるタイムスパンを指す。サイクル時間は、通常、金型キャビティ内にある部品の冷却によって左右される。サイクル時間は、tcycle=tclosing+tinjection+tcooling+tejectionを用いて計算することができ、ここで、型締時間tclosing、射出時間tinjection及び取出時間tejectionは1秒の数分の一から数秒しかかからず、冷却時間tcoolingが工程を左右する。しかしながら、ポリアミド組成物に対して組成物のメルトフローを高めることを目的とした構成成分を添加すると、通常、成形部品の動的破裂圧力が著しく低下する結果となる。従って、かかる組成物に関する一つの難しさは、特に低温時のエアバッグ容器の動的破裂圧力性能を著しく損なうことなく、メルトフローの高いポリアミド組成物を実現して持続させることである。]
[0004] 以上から、本発明は、メルトフローの高いエアバッグ容器であって、但し、特に低温時の高い動的破裂圧力という所望の特性は犠牲にすることのないエアバッグ容器の提供を目的とする。より具体的には、本発明の目的は、特に低温時の高い動的破裂圧力と、短いサイクル時間とを独自に良好に均衡させることである。]
[0005] 本発明は、25cm3/10分より高い溶融体積流量(MVR)(275℃/5kg)を有する耐衝撃性改良ポリアミド組成物からなるエアバッグ容器に関する。]
[0006] 意外なことに、耐衝撃性改良ポリアミド組成物の動的破裂圧力性能を、高度に、十分に高いレベルで維持し得ると同時に、サイクル時間の大幅な短縮を実現できることが分かっている。より具体的には、かかる高いメルトフローのポリアミド組成物を使用すると、−35℃で計測したとき、最高2MPaに至るまでの、及びそれよりさらに高い動的破裂圧力が達成され得る。]
[0007] 好ましくは、−35℃での動的破裂圧力は、1.6MPaより高く、より好ましくは1.7MPaより高く、さらにより好ましくは1.8MPaより高い。]
[0008] ポリアミド組成物の溶融体積流量は、さらに、30cm3/10分より高い値まで、さらには40cm3/10分より高い値まで(275℃/5kg)増加させ得ることが分かっている。ポリアミド組成物の溶融体積流量は、概して100cm3/10分より低く(275℃/5kg)、ほとんどは80より低いが、これは、ポリアミド組成物の溶融体積流量が100より高いと、−35℃での動的破裂圧力を十分に高いレベルで維持することがほぼ不可能なためである。]
[0009] 溶融体積流量(MVR)は、熱可塑性材料のメルトフローを測定するために一般的に用いられている計測方法である。国際規格ISO 1133:2005−06−01は、特定の温度及び負荷条件下における熱可塑性材料のMVRの測定手順を定めている。しかしながら、ISO 1133:2005−06−01にも、又は関連する材料規格にも定められていない数多くの条件があり、それらは、例えばポリアミド及びその組成物などの、時間−温度及び/又は湿度に敏感な熱可塑性材料に関するMVR計測の再現性に悪影響を及ぼす。これは、ISO/CD 1133−2,2007−03−02、参照番号ISO/TC 61/SC5/N 1105,2007−03−02、表題「プラスチック−熱可塑性材料の溶融質量流量(MFR)と溶融体積流量(MVR)の測定−第2部:時間−温度履歴及び/又は湿度に敏感な材料のための方法(Plastics−Determination of the melt mass−flow rate(MFR)and the melt volume−flow rate(MVR)of thermoplastic materials−Part 2:Method for materials sensitive to time−temperature history and/or moisture)」において既に対処されており、そこでは、MVR計測の再現性に悪影響を及ぼす条件が特定されている。明確にする目的から、こうした条件を以下に列挙して特定する。本明細書で使用されるとき、溶融体積流量(MVR)は、ISO 1133:2005−06−01に従い測定される。加えて、計測は、以下の特定の条件下で行われる。機器に関しては、長さ8.000mm及び直径2.095mmの標準的なダイを使用する;試験全体を通じた距離及び時間に伴うシリンダ温度の許容し得る最大変動値は、ダイ表面から0mm上方において±0.5℃、及びダイから10mm〜70mm上方において±0.3℃である;シリンダ温度は、目盛り付き器具を用いて、ダイの上面から上方に0mmから、ダイの上面から上方に70mmまで(70mmを含む)、10mm±0.5mm間隔で測定される;温度変動は、各位置において、最初に安定した温度を読み取ってから10分後まで1分間隔で温度を記録することにより計測される;最高圧力150mbarのN2パージを備えた真空オーブンが使用される。試料処理に関しては、試験前48時間にわたり95℃で被験試料を乾燥させる;含水量は≦200ppmである(ISO 15512);乾燥させた材料は、乾燥した、好ましくは高温の容器中に保管し、周囲温度まで冷却する;試験は冷却後4時間以内に行う。試料の量は、いずれの場合にも、材料の装入完了後、5分15秒〜5分30秒のうちに計測が開始されるような量である;材料を比較するため、試料体積は、互いに±0.5cm3以内である。MVR試験条件に関しては、試験温度は275℃である;負荷量は5kgであり、予熱時間は5分である。計測それ自体に関しては、材料の装入前の試料の取扱いが1分より長くてはならない;装入工程はt=0.5分〜t=1分のうちに完了しなければならず、シリンダ内の材料に対して負荷されるピストン又は負荷されないピストンは、例えば重量支持体を用いるなどして、予熱時間の間に材料に対して加えられる負荷を無視できるような方法で置かれる;シリンダへの被験試料の装入が完了後、t=5分で特定の負荷が材料に加えられる;試験は、下方の標点にシリンダの上端が達したとき、但し負荷を加えて15〜30秒後のうちに開始となる;ピストンが25mm〜30mmの特定の距離を移動するのにかかる時間が計測される;第2の標点にシリンダの上面が達する前、又は達したときに、試験は中止されるものとする。]
[0010] 本明細書で使用されるとき、エアバッグ容器の動的破裂圧力は、熱可塑性樹脂組成物を、厚さが2mmで、且つエアバッグ容器の形状を有する溶接されていない中空の部品の中に成形し(これ以降、成形部品と称する)、プレートとクランプとの間に固定して、部品が破裂するまで部品に内部的に圧力を加えることによって測定される。部品が破裂したときの圧力が動的破裂圧力であり、MPaで記録される。圧力の上昇は、爆発性ガスに点火することによって生じさせ、この爆発性ガスは、バルブシステムを介して成形部品に化学量論的なプロパン/空気又は水素/空気の混合気を充填することによって形成される。成形部品の温度及び爆発性ガス混合気の温度が、破裂圧力が測定されるときの温度に相当する。エアバッグ容器に似た成形部品1が、図1〜図3に表される。図1は成形部品1の側面図を表す;図2は成形部品1の底面図を表し、図3は、線A−Aに沿った成形部品1の垂直断面図を表す。成形部品1(図1を参照)は、いわゆるスプルー2と、円筒部品3と、丸みのある移行部4と、本体部品5と、リム6とを含む。動的破裂圧力を計測するには、リム6がプレートとクランプとの間に固定される。成形部品1のスプルー2は、底面直径が8mm、上面直径が5mm及び高さが21mmの円錐形である。円筒部品3は、32mmの外径及び12.5mmの高さを有する。円筒部品3は、移行部4を介して本体部品5に移る;移行部4は、3.6mmの高さ、及び成形部品の外側で4mmの半径(Q1)、成形部品の内側で2mmの半径(Q2)(図3)を有する。側面図(図1)において、本体部品5は、63.5mmの高さ、48mmの幅、及び成形部品1の外側で両側に5.3mmの半径(Q3)を有する。成形部品1の内側の半径(Q4)(図2)は2.3mmである。断面図(図3)は、本体部品が半径(Q5)91.6mmのアーチ状であることを示している。底面図(図2)は、本体部品がまた、半径(Q6)69.9mmのアーチ状でもあることを示している。本体部品5の側壁9a及び9bは、離型のための0.5度の抜き勾配を有する。本体部品5の一方の内側面に、L字型の2つの同一のリブ(7a、7b)がある。2つのリブ7a及び7bは、線B−Bに対して対称に位置決めされる。線B−Bと線8との間の距離は9mmである。リブ9a及び9bは、5mmの高さ、4.5mmの幅及び2mmの厚さを有する。線10と線11との間の距離は46.5mmである(図1及び図3)。本体部品5は、1mmの半径(Q7)を有する移行部を介してリム6に移る(図3)。側面図において、リム6は56mmの幅及び2mmの高さを有する。リムは以下の外側寸法を有する(図2を参照):158mmの全長及び56mmの幅(図1もまた参照)、線A−Aにおける点12と点13との間が9.1mmの幅、及び(長さ158mmの側面の)線14と線15との間が7mmの幅。] 図1 図2 図3
[0011] 通常、溶接された部品の溶接継目は最も脆弱な箇所であることから、溶接の存在によってエアバッグ容器の動的破裂圧力が低下するため、好ましくは、本発明のエアバッグ容器は溶接を含まない。]
[0012] 特に、有利には、ベースポリアミドと、耐衝撃性改良剤と、強化化合物と、流動性向上剤とを含むポリアミド組成物を使用して、低温(−35℃)で高い動的破裂圧力を有すると同時に、短いサイクル時間で生産することのできるエアバッグ容器が得られ得ることが分かっている。従って、本発明はまた、ベースポリアミドと、耐衝撃性改良剤と、強化化合物と、流動性向上剤とを含む耐衝撃性改良ポリアミド組成物からなるエアバッグ容器にも関する。]
[0013] ポリアミド組成物中の耐衝撃性改良剤の量は、概して、4wt.%より高く、好ましくは5wt.%より高い(対組成物全体)。ポリアミド組成物中の耐衝撃性改良剤の量は、概して、30wt.%より低く、具体的には25wt.%より低く、より具体的には20wt.%より低く、さらにより具体的には10wt.%より低い。]
[0014] 本発明に係る部品の成形に用いられる組成物中の好適なベースポリアミドとしては、あらゆるポリアミド、結晶性、半結晶性、並びに非晶質のもの、又はそれらの混合物が挙げられる。ポリアミドに関する概論は、例えば「Roempp Chemie−Lexikon」、第9版、第5巻、359頁ff.及びそこで言及されている引用文献に見出すことができる。しかし、ポリアミドPA6、PA46、PA66、PA11、PA12、PA6T/66、PA6T/6I、PA6I/6T、PA6/6T、PA6/66、PA8T、PA9T、PA12T、PA69、PA610、PA612、PA1012、PA1212、PA MACM12、PA PACM12、PA MACMT、PA PACP12、PA NDT、PA MXDI、PA NI、PANT、PA TMHMDAT、PA12/PACMT/PACMI、PA12/MACMI/MACMT、PA N12、PA6/MACMI又はこれらのブレンドが好ましい。好ましくは、ポリアミド6、ポリアミド6,6又はポリアミド4,6が選択され、又はそれらの混合物若しくはそれらの単量体から構成されるコポリアミドが選択される。より好ましくは、ベースポリアミドはポリアミド6である。さらにより好ましくは、ベースポリアミドは、相対溶液粘度が2より高く、好ましくは2.2より高く、且つ2.8より低く、好ましくは2.6より低いポリアミド6である。相対溶液粘度はISO307に従い計測され、25.00℃の90%濃度のギ酸100ml中、1グラムのポリアミド6の溶液を用いて測定される。]
[0015] 通常、ポリアミド組成物は、30〜80wt.%の量(対ポリアミド組成物全体)のベースポリアミドを含む。]
[0016] 好ましくは、ポリアミド組成物は、0.1〜50wt.%の量(対ポリアミド組成物全体)の流動性向上剤を含む。より好ましくは、ポリアミド組成物は、0.1〜40wt.%の量、さらにより好ましくは0.1〜30wt.%の量、さらにより好ましくは0.1〜20wt.%の量(対ポリアミド組成物全体)の流動性向上剤を含む。]
[0017] 本発明の目的上、流動性向上剤はポリアミド組成物の溶融粘度を低下させる。好ましい流動性向上剤はオリゴマーである。好ましいオリゴマーは、ポリアミドオリゴマーである。好適なポリアミドオリゴマーとしては、分子量が低い上述のポリアミドが挙げられる。好ましいポリアミドオリゴマーは、ポリアミド6オリゴマー、ポリアミド4,6オリゴマー、ポリアミド6,6オリゴマー、又はこれらのオリゴマーのうちの少なくとも2つの混合物である。ポリアミドオリゴマーは、好ましくは組成物中のベースポリアミドの「エンタングルメント間の分子量」より低い重量平均分子量を有する低分子量ポリアミドである。この「エンタングルメント間の分子量」は、例えば、ポリアミド6の場合5,000g/molである。好ましくは、重量平均分子量は、多くとも5,000g/mol、好ましくは多くとも4,000g/mol、より好ましくは多くとも3,000g/molである。分子量は、好ましくは低過ぎることもなく、それによって、例えばガラス転移温度が下がるリスクが回避される。好ましくは重量平均分子量は、約500g/molより大きく、より好ましくは約1,000g/molより大きい。ポリアミド組成物中のオリゴマーの量は、好ましくは0.1〜20wt.%、より好ましくは0.1〜10wt.%、さらにより好ましくは0.1〜5wt.%(対ポリアミド組成物全体)である。]
[0018] 好ましくは、組成物は、重量平均分子量が少なくとも10,000g/molのベースポリアミドと、重量平均分子量が多くとも5,000g/molのポリアミドオリゴマーとを含む。]
[0019] より好ましくは、組成物は、重量平均分子量が少なくとも15,000g/molのベースポリアミドと、重量平均分子量が多くとも4,000g/molのポリアミドオリゴマーとを含む。]
[0020] 本発明に係るエアバッグ容器を構成する組成物中の好適な耐衝撃性改良剤としては、ポリアミド組成物を強化するために用いられる通常のポリマーが挙げられる。好適な耐衝撃性改良剤の例は、ポリアミドとの反応性を有する基を含むコアシェルゴム及びオレフィンゴムなどの酸性官能基のエラストマーである。耐衝撃性改良剤に関する概論は、例えば、「Nylon Plastics Handbook」、1995年版、415頁ff.及びそこで言及されている引用文献に見出すことができる。好ましい耐衝撃性改良剤は、オレフィンなどの非極性単量体を含むゴムであり、また、極性単量体又は反応性単量体、とりわけ、アクリレート、エポキシド、酸又は無水物を含有する単量体などを含むゴムでもある。例としては、エチレンの(メタ)アクリル酸との共重合体又は無水物基で官能化されたエチレン/プロピレン共重合体が挙げられる。]
[0021] ゴムとは、本明細書では、低弾性率と、0℃より低く、好ましくは−25℃より低いガラス転移温度とを有する軟質ゴムを意味する。この定義に該当するポリマーの例は、エチレンとαオレフィン、例えばプロペン及びブテンとの共重合体である。また、メタロセン触媒の存在下での重合によって得ることのできるプラストマー、例えばエチレンと1−オクテンとの共重合体も、ゴム混合物の構成成分として好適である。]
[0022] 本明細書で使用されるとき、官能化ゴムは、ポリアミドとの反応性を有する基を含むゴムである。かかる官能化ゴムは公知である。例えば米国特許第4,174,358号明細書は、多数の好適な官能化ゴム並びにかかる官能化ゴムの調製方法について記載している。無水マレイン酸と反応させることによって化学修飾されるオレフィンゴム、又は、不飽和ジカルボン酸、その無水物及び/又はエステル、例えば、マレイン酸無水物、イタコン酸及びイタコン酸無水物、フマル酸及びマレイン酸エステル並びにアクリル酸グリシジル、例えばメタクリル酸グリシジルとのゴムのエントコポリマー(entcopolymer)が、極めて好適である。その場合、ポリアミドは好ましくは、官能基と反応することのできるアミノ末端基を十分に含む。官能化エチレン−αオレフィン共重合体は、ポリアミド6の場合には、好ましくはマレイン酸無水物によって官能化される。官能化ゴムのマレイン酸無水物含量は、広い範囲内、例えば0.1〜10wt.%、好ましくは0.1〜5wt.%、より好ましくは0.1〜2wt.%において様々であり得る。]
[0023] 耐衝撃性改良剤の量に対するオリゴマーの量は、一般に、用いられるオリゴマーのタイプに依存する。好ましくは、ポリアミド組成物は、耐衝撃性改良剤の量に対して5〜70wt.%のオリゴマー、より好ましくは20〜50wt.%のオリゴマー、さらにより好ましくは30〜40wt.%のオリゴマーを含む。]
[0024] ポリアミド組成物には、様々なタイプの強化化合物、例えば鉱物(タルク、ウォラストナイト、カオリンなど)、及び繊維を用いることができる。その寸法及びその化学的組成の双方に関して、多種多様な繊維を用いることができる。好適な寸法を有する繊維は、ポリアミド組成物中の平均アスペクト比(長さ対直径の比)が5〜100、及び直径が1〜20μm、好ましくは8〜15μmの繊維である。好適なタイプの繊維としては、天然繊維及び人造繊維の双方、例えば、炭素繊維、鉱物繊維、ポリマー繊維及びガラス繊維が挙げられる。好適なポリマー繊維は、ポリアラミド繊維である。本発明に係る成形部品に特に好ましい繊維は、ガラス繊維である。繊維は、好ましくは、ポリアミド組成物に対するその付着性を向上させるため、例えばシラン化合物によって被覆される。]
[0025] 本発明の特に好ましい実施形態において、ポリアミド組成物は、30〜80wt.%のポリアミドと、0.1〜20wt.%のポリアミドオリゴマーと、4〜20wt.%の耐衝撃性改良剤と、20〜50wt.%の強化材料と(合計量100wt.%)を含む。従って本発明は、特に、30〜80wt.%のポリアミドと、0.1〜20wt.%のポリアミドオリゴマーと、4〜20wt.%の耐衝撃性改良剤と、20〜50wt.%の強化材料と(合計量100wt.%)を含むポリアミド組成物からなるエアバッグ容器に関する。]
[0026] ポリアミド組成物は、構成成分を任意の公知の方法で混合することにより得ることができる。例えば構成成分をドライブレンドし、従って溶融混合装置、好ましくは押出機に供給してもよい。また、構成成分は、溶融混合装置に直接供給し、同時に、又は別個に投入することもできる。溶融混合装置としては押出機が好ましい。その場合、組成物は、本発明に係るエアバッグ容器の製造に用いることのできるペレットとして得られる。好ましくは溶融混合は不活性ガス雰囲気下で実施され、材料は乾燥させてから混合される。]
[0027] ポリアミド組成物の調製の好ましい実施形態では、ベースポリアミド及び耐衝撃性改良剤がスロートを介して押出機に供給され、強化化合物の少なくとも一部の量、好ましくは全量は、少なくともベースポリアミドと耐衝撃性改良剤とを含む溶融物に供給される。流動性向上剤は、好ましくはベースポリアミドと耐衝撃性改良剤とを含む溶融物に供給され、より好ましくは流動性向上剤は、ベースポリアミドと、耐衝撃性改良剤と、強化化合物とを含む溶融物に供給される。]
[0028] 意外なことに、第1のステップにおいて、ベースポリアミドと耐衝撃性改良剤とをブレンドすることにより、連続的なポリアミド母材と、その中に分散したゴム粒子とを得るとともに、第1のステップで得られたブレンドの中に流動性向上剤をブレンドすることによってポリアミド組成物が調製されるとき、本発明の有利な効果がさらに一層顕著となることが分かっている。好ましくは、ベースポリアミドと耐衝撃性改良剤とを含むブレンドに強化化合物を添加するのは、流動性向上剤を前記ブレンドの中にブレンドする前である。好ましくは、ブレンド作業は押出機で行われる。]
[0029] ここで、以下の実施例及び比較実験に基づき、本発明がさらに明らかにされる。]
[0030] [使用材料]
耐衝撃性改良剤:Exxelor VA1801、0.6wt.%のグラフト無水マレイン酸を含むエチレン−プロピレン共重合体、メルトフローインデックス(MFI)は8g/10分(230℃/10kg)。
ポリアミド6(PA6):DSMN.V.のAkulon K122、ギ酸中での相対溶液粘度(RSV)(1g/100ml)は2.28。
ガラス繊維:Owens CorningのCS 173X−11P、繊維径11μm。
流動性向上剤:PA4,6オリゴマー、重量平均Mw=2000g/モル、及びTmelt=295℃。]
[0031] [物理的特性の決定]
上述のとおり計測される溶融体積流量(MVR)。
上述のとおり計測される−35℃における動的破裂圧力。]
[0032] [比較実験A]
PA−6とガラス繊維との混合物を、同時回転式二軸スクリュー押出機(90mm)にスクリュー回転数300r.p.m.及び押出量1000kg/時間で2つの構成成分を供給することによって調製した。側方供給口を介してガラス繊維を添加した。溶融ストランドを水浴で冷却し、細粒に切断して乾式冷却したうえで、ラミネート袋に包装した。上記に指示されるとおり、生成物のMVRを測定した。細粒を、図1〜図3に示されるような、上記の仕様に指示されるとおりの寸法を有する成形部品に射出成形した。上記に指示されるとおり、−35℃における動的破裂圧力を計測した。結果を表1に示す。] 図1 図2 図3
[0033] [比較実験B]
PA−6と、耐衝撃性改良剤と、ガラス繊維との混合物を、同時回転式二軸スクリュー押出機(90mm)にスクリュー回転数300r.p.m及び押出量1000kg/時間で構成成分を供給することによって調製した。側方供給口を介してガラス繊維を添加した。溶融ストランドを水浴で冷却し、細粒に切断して乾式冷却したうえで、ラミネート袋に包装した。上記に指示されるとおり、生成物のMVRを測定した。細粒を、図1〜図3に示されるような、上記の仕様に指示されるとおりの寸法を有する成形部品に射出成形した。上記に指示されるとおり、−35℃における動的破裂圧力を計測した。結果を表1に示す。] 図1 図2 図3
[0034] [比較実験C]
PA−6と、ガラス繊維と、流動性向上剤との混合物を、同時回転式二軸スクリュー押出機(90mm)にスクリュー回転数300r.p.m.及び押出量1000kg/時間で構成成分を供給することによって調製した。側方供給口を介してガラス繊維を添加した。PA−6とガラス繊維との混合物に流動性向上剤を添加した。溶融ストランドを水浴で冷却し、細粒に切断して乾式冷却したうえで、ラミネート袋に包装した。上記に指示されるとおり、生成物のMVRを測定した。細粒を、図1〜図3に示されるような、上記の仕様に指示されるとおりの寸法を有する成形部品に射出成形した。上記に指示されるとおり、−35℃における動的破裂圧力を計測した。結果を表1に示す。] 図1 図2 図3
[0035] [実施例1]
PA−6と、ガラス繊維と、耐衝撃性改良剤と、流動性向上剤との混合物を、同時回転式二軸スクリュー押出機(40mm)に、溶融温度320℃、スクリュー回転数450r.p.m及び押出量250kg/時間で構成成分を供給することによって調製した。PA−6と耐衝撃性改良剤とを押出機のスロートに添加した。側方供給口を介してガラス繊維を添加した。PA−6と、耐衝撃性改良剤と、ガラス繊維との混合物に流動性向上剤を添加した。溶融ストランドを水浴で冷却し、細粒に切断して乾式冷却したうえで、ラミネート袋に包装した。]
[0036] 上記に指示されるとおり、生成物のMVRを測定した。細粒を、図1〜図3に示されるような、上記の仕様に指示されるとおりの寸法を有する成形部品に射出成形した。上記に指示されるとおり、−35℃における動的破裂圧力を計測した。結果を表1に示す。] 図1 図2 図3
[0037] ]
[0038] 実施例1は、エアバッグキャニスタの製造に一般的な材料である比較実験Bと比較して、破裂圧力性能を著しく損なうことなしに、高い流動性があることを特徴とする。比較実験A及びCは、耐衝撃性改良性を含まない材料がより高い流動性を実現できるものの、これは動的破裂圧力性能の大幅な低下に至ることを示している。]
図面の簡単な説明

[0039] 成形部品1の側面図を表す。
成形部品1の底面図を表す。
線A−Aに沿った成形部品1の垂直断面図を表す。]
权利要求:

請求項1
耐衝撃性改良ポリアミド組成物からなるエアバッグ容器であって、前記ポリアミド組成物が、25cm3/10分より高い溶融体積流量(275℃/5kg)を有することを特徴とする、エアバッグ容器。
請求項2
前記ポリアミド組成物が、ベースポリアミドと、耐衝撃性改良剤と、強化化合物と、流動性向上剤とを含むことを特徴とする、請求項1に記載のエアバッグ容器。
請求項3
前記ポリアミド組成物が、4wt.%より多い量(対ポリアミド組成物全体)の耐衝撃性改良剤を含むことを特徴とする、請求項1又は2に記載のエアバッグ容器。
請求項4
前記ポリアミド組成物が、30wt.%未満の量(対ポリアミド組成物全体)の耐衝撃性改良剤を含むことを特徴とする、請求項1〜3のいずれか一項に記載のエアバッグ容器。
請求項5
前記ポリアミド組成物が、耐衝撃性改良剤として、無水マレイン酸で化学修飾されたオレフィンゴムを含むことを特徴とする、請求項1〜4のいずれか一項に記載のエアバッグ容器。
請求項6
前記ポリアミド組成物が、30〜80wt.%の量(対ポリアミド組成物全体)のベースポリアミドを含むことを特徴とする、請求項1〜5のいずれか一項に記載のエアバッグ容器。
請求項7
前記ポリアミド組成物が、0.1〜50wt.%の量(対ポリアミド組成物全体)の流動性向上剤を含むことを特徴とする、請求項1〜6のいずれか一項に記載のエアバッグ容器。
請求項8
前記ポリアミド組成物が、流動性向上剤としてポリアミドオリゴマーを含むことを特徴とする、請求項1〜7のいずれか一項に記載のエアバッグ容器。
請求項9
前記ポリアミドオリゴマーが、1000〜5000g/molの重量平均分子量Mwを有することを特徴とする、請求項8に記載のエアバッグ容器。
請求項10
前記ポリアミド組成物が、0.1〜20wt.%の量(対ポリアミド組成物全体)のポリアミドオリゴマーを含むことを特徴とする、請求項8又は9に記載のエアバッグ容器。
請求項11
前記ポリアミドオリゴマーが、ポリアミド6オリゴマー、ポリアミド4,6オリゴマー、ポリアミド6,6オリゴマー、又はこれらのオリゴマーのうちの少なくとも2つの混合物であることを特徴とする、請求項8〜10のいずれか一項に記載のエアバッグ容器。
請求項12
前記組成物が耐衝撃性改良剤とオリゴマーとを含み、耐衝撃性改良剤の量に対するオリゴマーの量が5〜70wt.%であることを特徴とする、請求項1〜11のいずれか一項に記載のエアバッグ容器。
請求項13
ベースポリアミドがポリアミド6であることを特徴とする、請求項2〜12のいずれか一項に記載のエアバッグ容器。
請求項14
前記強化化合物がガラス繊維であることを特徴とする、請求項2〜13のいずれか一項に記載のエアバッグ容器。
請求項15
第1のステップにおいて、前記ベースポリアミドと前記耐衝撃性改良剤とをブレンドすることにより、連続的なポリアミド母材と、その中に分散したゴム粒子とを得るとともに、前記第1のステップで得られた前記ブレンドの中に前記流動性向上剤をブレンドすることにより、前記ポリアミド組成物が調製されることを特徴とする、請求項2〜14のいずれか一項に記載のエアバッグ容器。
类似技术:
公开号 | 公开日 | 专利标题
ES2282092T3|2007-10-16|Deposito de combustible.
US9091516B2|2015-07-28|Ammunition cartridge case bodies made with polymeric nanocomposite material
TW593540B|2004-06-21|Filled polyamide moulding materials having improved processing behavior
CA2342711C|2007-07-31|Compositions antistatiques a base de polyamide
US8835595B2|2014-09-16|Polyamide compound
KR101118818B1|2012-06-13|중공 본체 형상의 열가소성 다층 복합물
JP3594800B2|2004-12-02|多層複合材料
EP2676988B1|2019-12-18|Polyether polyamide elastomer
EP1228862B1|2006-08-09|Liner for high pressure gas container and high pressure gas container
CA2171414C|2000-11-07|Tubes a base de polyamide pour transport d'essence
US6740709B2|2004-05-25|Resin molding
JP2017201213A|2017-11-09|ガス貯蔵タンク用ライナー
US9512301B2|2016-12-06|Polyamide resin composition reinforced with glass fiber
KR101479800B1|2015-01-13|폴리아미드 블렌드 성형 컴파운드
RU2504709C2|2014-01-20|Гибкая труба, предназначенная для транспортировки нефти или газа
ES2206147T3|2004-05-16|Tubo multicapa basado en poliamidas para el transporte de gasolina.
US8691911B2|2014-04-08|Melt-blended thermoplastic composition
ES2380304T3|2012-05-10|Composición adhesiva y estructura que comprende al menos una capa de dicha composición
JP2011503343A|2011-01-27|改善された接着性を有する成形品を製造するためのポリアミド組成物の使用、その成形品およびかかる材料の接着方法
JP5342107B2|2013-11-13|成形コンパウンドおよびその製造法
JP5497921B2|2014-05-21|共重合ポリアミド
ES2315646T3|2009-04-01|Articulo de poliamida reforzado con fibras largas.
EP1041109A2|2000-10-04|Polyamide compositions having good fluidity
JP5105563B2|2012-12-26|ポリアミド及びポリアミド組成物
EP2441801B1|2018-03-21|Polyamide resin composition and molded product
同族专利:
公开号 | 公开日
US20110042928A1|2011-02-24|
ES2368304T3|2011-11-16|
JP2016026234A|2016-02-12|
KR20100095602A|2010-08-31|
CN101903215B|2012-12-12|
US8641080B2|2014-02-04|
WO2009080616A1|2009-07-02|
EA201001037A1|2010-10-29|
EP2222515B1|2011-07-13|
AT516180T|2011-07-15|
CN101903215A|2010-12-01|
EA016860B1|2012-08-30|
BRPI0820786A2|2015-06-16|
EP2222515A1|2010-09-01|
BRPI0820786B1|2018-12-26|
KR101546989B1|2015-08-24|
JP5881073B2|2016-03-09|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JPH06227352A|1993-02-02|1994-08-16|Ikeda Bussan Co Ltd|エアバッグ装置|
JP2002537433A|1999-02-17|2002-11-05|ゼネラル・エレクトリック・カンパニイ|ポリエステル成形用組成物|
WO2006122602A1|2005-05-20|2006-11-23|Ems-Chemie Ag|Polyamidformmassen mit verbesserter fliessfähigkeit, deren herstellung sowie deren verwendung|JP2017509763A|2014-04-02|2017-04-06|アルケマ フランス|A novel impact-modified thermoplastic composition with a high level of fluidity in the molten state|CA1332992C|1986-08-27|1994-11-08|Susan Marie Liwak|Impact-strength modifiers for thermoplastic polymers|
FR2694530A1|1992-08-07|1994-02-11|Morton Int Inc|Conteneur pour coussinet de sécurité.|
SG45409A1|1995-06-07|1998-01-16|Gen Electric|Compositions of poly and polyamide resins which exhibit improved melt strength|
JPH0987394A|1995-09-27|1997-03-31|Sumitomo Chem Co Ltd|オレフィン系熱可塑性エラストマーシート、該シートからなる積層体及びその用途|
JP3434698B2|1998-01-21|2003-08-11|住友化学工業株式会社|エアバッグ収納用ケース|
NL1012234C2|1999-06-04|2000-12-06|Dsm Nv|Hoog-moleculaire polyamide samenstelling met verbeterd vloeigedrag.|
DE19929301A1|1999-06-25|2000-12-28|Basf Ag|Aus mit Epoxypolymeren vorbehandelten glasfaserverstärkten Formteilen geschweißte Verbunde|
JP2002348464A|2001-05-23|2002-12-04|Toyobo Co Ltd|Polyamide-based resin composition and molded article|
DE10141943B4|2001-08-28|2004-09-23|Bayerische Motoren Werke Ag|Türairbaganordnung für Fahrzeuge|
US20040235999A1|2001-09-21|2004-11-25|Marc Vathauer|Modified shock-resistant polymer compositions|
JP3915463B2|2001-10-09|2007-05-16|東洋紡績株式会社|ポリアミド系樹脂組成物及び成形体|
DE10203971A1|2002-01-31|2003-08-14|Bayer Ag|Schlagzäh-modifizierte Polyamidformmassen mit erhöhter Schmelzeviskosität und verbesserter Oberflächenqualität|
DE10239326A1|2002-08-27|2004-03-18|Ems-Chemie Ag|Highly viscous molding compounds with nanoscale fillers|
US7855251B2|2004-09-23|2010-12-21|Polyone Corporation|Impact-modified polyamide compounds|
JP2006335909A|2005-06-03|2006-12-14|Fujifilm Holdings Corp|電子機器用部材|
US20070135570A1|2005-12-14|2007-06-14|General Electric Company|Thermoplastic polycarbonate compositions with low gloss, articles made therefrom and method of manufacture|WO2011055253A1|2009-11-09|2011-05-12|Koninklijke Philips Electronics N.V.|Flow sensing method with temperature compensation|
CN104708551B|2015-02-09|2017-04-12|浙江吉利控股集团有限公司|气体发生器的试验夹具及气体发生器的试验方法|
法律状态:
2011-08-17| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110816 |
2013-05-28| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130528 |
2013-06-05| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130604 |
2013-11-27| A02| Decision of refusal|Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131126 |
2014-03-18| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140317 |
2014-03-25| A911| Transfer to examiner for re-examination before appeal (zenchi)|Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140324 |
2014-05-26| A912| Re-examination (zenchi) completed and case transferred to appeal board|Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20140523 |
2015-02-02| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20150202 |
2015-05-12| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150512 |
2015-10-16| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20151016 |
2015-11-11| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151111 |
2016-02-04| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160126 |
2016-02-12| R150| Certificate of patent or registration of utility model|Ref document number: 5881073 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2019-02-05| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2020-01-31| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2021-02-12| LAPS| Cancellation because of no payment of annual fees|
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]